Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer.
نویسندگان
چکیده
In this study, silk fibroin was extracted from cocoons of silkworms and fabricated into nonwoven mats by electrospinning method. A new model based on the group method of data handling (GMDH) and artificial neural network (ANN) was developed for estimation of the average diameter of electrospun silk fibroin nanofibers. In this regard, concentration, flow rate, voltage, distance, and speed of collector were used as input parameters and average diameter of the fibers was considered as output parameter. Two models were capable to estimate average diameter of fibers with good accuracy. The average absolute relative deviation for GMDH and ANN models was equal to 3.56 and 2.28 %, respectively. Furthermore, due to importance of oxygen delivery to site of injury to promote wound healing, continuity equation for mass transport was employed for prediction of oxygen profile in the system containing wound dressing and skin. The result showed that our prepared wound dressing is capable to pass the oxygen completely to the skin layer and is not acting as a barrier for oxygen delivery to wound site. Since average nanofibers diameter can influence the mat physical, mechanical and biological properties then this model may serve as a useful guide to obtain tailor made and uniform silk nanofibers at various combinations of process variables.
منابع مشابه
Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models
Replicating the nanostructured components of extracellular matrix is a target for dermal tissue engineering and regenerative medicine. Electrospinning Bombyx mori silk fibroin (BMSF) allows the production of nano- to microscale fibrous scaffolds. For BMSF electrospun scaffolds to be successful, understanding and optimizing the cellular response to material morphology is essential. Primary human...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملSilk-based electrospun tubular scaffolds for tissue-engineered vascular grafts.
Electrospinning was used to fabricate non-woven nanofibrous tubular scaffolds from Bombyx mori silk fibroin using an all aqueous process. Cell studies and mechanical characterization tests were performed on the electrospun silk tubes to assess the viability of their usage in bioengineering small-diameter vascular grafts. Human endothelial cells and smooth muscle cells were successfully cultured...
متن کاملCarbon Nanotube Reinforced Bombyx Mori Silk as a Biocomposite Material for Tissue Engineering Applications
Silk fibers are fibrous protein with unique combination of strength and toughness. Its biocompatibility makes it an ideal candidate for various biomedical applications. We hypothesized that composites consisting of silk and carbon nanotube (CNT) will have superior mechanical properties. This paper describes the production of protein based scaffolds having required mechanical properties and acti...
متن کاملBiocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration
Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of poly(l-lactic acid)-co-poly-(ε-caprolactone) (PLA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in biomaterials
دوره 5 شماره
صفحات -
تاریخ انتشار 2016